Kinetics of prion growth.
نویسندگان
چکیده
We study the kinetics of prion fibril growth, described by the nucleated polymerization model analytically and by means of numerical experiments. The elementary processes of prion fibril formation lead us to a set of differential equations for the number of fibrils, their total mass, and the number of prion monomers. In difference to previous studies we analyze this set by explicitly taking into account the time-dependence of the prion monomer concentration. The theoretical results agree with experimental data, whereas the generally accepted hypothesis of constant monomer concentration leads to a fibril growth behavior which is not in agreement with experiments. The obtained size distribution of the prion fibril aggregates is shifted significantly toward shorter lengths as compared to earlier results, which leads to a enhanced infectivity of the prion material. Finally, we study the effect of filtering of the inoculated material on the incubation time of the disease.
منابع مشابه
An analytical solution to the kinetics of breakable filament assembly.
We present an analytical treatment of a set of coupled kinetic equations that governs the self-assembly of filamentous molecular structures. Application to the case of protein aggregation demonstrates that the kinetics of amyloid growth can often be dominated by secondary rather than by primary nucleation events. Our results further reveal a range of general features of the growth kinetics of f...
متن کاملComplement protein C3 exacerbates prion disease in a mouse model of chronic wasting disease.
Accumulating evidence shows a critical role of the complement system in facilitating attachment of prions to both B cells and follicular dendritic cells and assisting in prion replication. Complement activation intensifies disease in prion-infected animals, and elimination of complement components inhibits prion accumulation, replication and pathogenesis. Chronic wasting disease (CWD) is a high...
متن کاملAnalysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast.
The propagation of the prion form of the yeast Sup35p protein, the so-called [PSI(+)] determinant, involves the generation and partition of a small number of particulate determinants that we propose calling "propagons." The numbers of propagons in [PSI(+)] cells can be inferred from the kinetics of elimination of [PSI(+)] during growth in the presence of a low concentration of guanidine hydroch...
متن کاملNanopore Analysis of Wild-Type and Mutant Prion Protein (PrPC): Single Molecule Discrimination and PrPC Kinetics
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrP(C)) in the central nervous system into the infectious isoform (PrP(Sc)). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrP(Sc). A number of pathogenic PrP(C) mutants exist that are characterized by an...
متن کاملCooperative hydrogen bonding in amyloid formation.
Amyloid diseases, including Alzheimer's and prion diseases, are each associated with unbranched protein fibrils. Each fibril is made of a particular protein, yet they share common properties. One such property is nucleation-dependent fibril growth. Monomers of amyloid-forming proteins can remain in dissolved form for long periods, before rapidly assembly into fibrils. The lag before growth has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 85 6 شماره
صفحات -
تاریخ انتشار 2003